PCEVA,PC绝对领域,探寻真正的电脑知识
打印 上一主题 下一主题
开启左侧

~~建议大家都去读一本书,读后会改变你现有的世界观~

  [复制链接]
跳转到指定楼层
1#
rkingj 发表于 2012-2-1 12:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
点击数:15902|回复数:66
本帖最后由 rkingj 于 2012-2-1 12:54 编辑

大爆炸——宇宙通史    作  者:(英)帕特里克·摩尔,(英)布赖恩·梅,(英)克里斯·林陶特 著,李元 等译



读完后,如果有机会,在夜深人静的夜晚独自仰望晴朗的浩瀚星空,相信你一定会有所感悟的,相信我!





































。。。。。。其实我们真的很渺小,快乐的度过每一天才是生命中最重要的事!!!
2#
rkingj  楼主| 发表于 2012-2-1 12:51 | 只看该作者
本帖最后由 rkingj 于 2012-2-1 13:12 编辑

天文学家能够观测到的最遥远的光线名为“宇宙微波背景辐射”(CMB)。这是抵达地球的最古老的光子,它们几乎诞生于宇宙大爆炸发生的时刻。在大爆炸发生后的短时间内,宇宙非常小,因此相当拥挤,物质太过稠密,以至于光线无法长距离传播。

但在宇宙诞生之后大约38万年之后,宇宙已经变得足够大,光线第一次可以自由地传播。这时发出的光是我们今天所能观测到的最古老的光线,是宇宙的第一缕曙光;它存在于宇宙的每一个方向,无论你把望远镜指向哪个方向,都可以观测到它的存在。宇宙微波背景辐射就像一堵墙,我们最远也只能看到墙这一侧的风景,但是却绝无办法穿墙而过。

那么这些最初的宇宙之光怎么变成微波了呢?这还是因为宇宙的膨胀。随着宇宙的膨胀,当时发出的光波波长被逐渐拉长,经历如此久远的时间(137亿年),它们的波长已经被拉伸到了不可思议的程度。随着宇宙膨胀冷却,现在这一辐射的剩余温度大约仅有-270摄氏度,也就是著名的3K背景辐射。这种辐射的分布显示出惊人地各向同性,各处的差异小于10万分之一。

而如果有朝一日人类终于能够制造出高灵敏度的中微子探测器,那么我们将终于可以突破宇宙微波背景辐射设置的那堵墙,而看到其背后中微子出现时的情景,即所谓的“宇宙中微子背景”。和光子不同,对中微子而言,一般意义上的物质几乎是透明的,它们可以轻而易举地穿过地球,穿过太阳,甚至穿过整个宇宙。正是因为这一特征,一旦我们能够解码中微子中携带的信息,我们将能回溯到宇宙大爆炸之后仅数秒时的情景。



3#
张建荣 发表于 2012-2-1 13:00 | 只看该作者
本帖最后由 张建荣 于 2012-2-1 13:03 编辑


。。。。。。 宇宙什么的 , 爆炸什么的 , 最讨厌了 。




                     不过,人的渺小 , 我早就悟道了 。




                    在银河系中,太阳系都找不到 。。。。。别的就不多说了。
4#
rkingj  楼主| 发表于 2012-2-1 13:03 | 只看该作者
张建荣 发表于 2012-2-1 13:00
。。。。。。 宇宙什么的 , 爆炸什么的 , 最讨厌了 。

......................如果不是家里反对,我一定会报考天体物理系,唉!
5#
张建荣 发表于 2012-2-1 13:05 | 只看该作者
rkingj 发表于 2012-2-1 13:03
......................如果不是家里反对,我一定会报考天体物理系,唉!




。。。。。。 然后,一开口就是多少多少光年的胡咧咧。





                    
6#
厨师 发表于 2012-2-1 13:07 | 只看该作者
天体物理系,The Big Bang Theory哪个科学家?

点评

印度三哥  发表于 2012-2-2 12:58
7#
rkingj  楼主| 发表于 2012-2-1 13:11 | 只看该作者
张建荣 发表于 2012-2-1 13:05
。。。。。。 然后,一开口就是多少多少光年的胡咧咧。

信不信,就“光年”这么一个单词,就能让我神往半天了!

更别说啥“红移值”了............



注:星系的红移值约为10,这相当于距离地球315亿光年...................................
8#
rkingj  楼主| 发表于 2012-2-1 13:16 | 只看该作者
厨师 发表于 2012-2-1 13:07
天体物理系,The Big Bang Theory哪个科学家?

The Big Bang theory developed from observations of the structure of the Universe and from theoretical considerations. In 1912 Vesto Slipher measured the first Doppler shift of a "spiral nebula" (spiral nebula is the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way.[15][16] Ten years later, Alexander Friedmann, a Russian cosmologist and mathematician, derived the Friedmann equations from Albert Einstein's equations of general relativity, showing that the Universe might be expanding in contrast to the static Universe model advocated by Einstein at that time.[17] In 1924 Edwin Hubble's measurement of the great distance to the nearest spiral nebulae showed that these systems were indeed other galaxies. Independently deriving Friedmann's equations in 1927, Georges Lemaître, a Belgian physicist and Roman Catholic priest, proposed that the inferred recession of the nebulae was due to the expansion of the Universe.[18]

In 1931 Lemaître went further and suggested that the evident expansion of the universe, if projected back in time, meant that the further in the past the smaller the universe was, until at some finite time in the past all the mass of the Universe was concentrated into a single point, a "primeval atom" where and when the fabric of time and space came into existence.[19]

Starting in 1924, Hubble painstakingly developed a series of distance indicators, the forerunner of the cosmic distance ladder, using the 100-inch (2,500 mm) Hooker telescope at Mount Wilson Observatory. This allowed him to estimate distances to galaxies whose redshifts had already been measured, mostly by Slipher. In 1929 Hubble discovered a correlation between distance and recession velocity—now known as Hubble's law.[8][20] Lemaître had already shown that this was expected, given the Cosmological Principle.[21]

During the 1930s other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model,[22] the oscillatory Universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard Tolman)[23] and Fritz Zwicky's tired light hypothesis.[24]

After World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model, whereby new matter would be created as the Universe seemed to expand. In this model the Universe is roughly the same at any point in time.[25] The other was Lemaître's Big Bang theory,[notes 1] advocated and developed by George Gamow, who introduced big bang nucleosynthesis (BBN)[26] and whose associates, Ralph Alpher and Robert Herman, predicted the cosmic microwave background radiation (CMB).[27] Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949.[28][notes 2] For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts, began to favor Big Bang over Steady State. The discovery and confirmation of the cosmic microwave background radiation in 1964[29] secured the Big Bang as the best theory of the origin and evolution of the cosmos. Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding the physics of the Universe at earlier and earlier times, and reconciling observations with the basic theory.

Huge strides in Big Bang cosmology have been made since the late 1990s as a result of major advances in telescope technology as well as the analysis of copious data from satellites such as COBE,[30] the Hubble Space Telescope and WMAP.[31] Cosmologists now have fairly precise and accurate measurements of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the Universe appears to be accelerating.

关于大爆炸学说产生的历史背景
9#
jeffxl 发表于 2012-2-1 13:21 | 只看该作者
我看霍金的时间简史,那个也不错
10#
badaa 发表于 2012-2-1 13:28 | 只看该作者
不懂
11#
rkingj  楼主| 发表于 2012-2-1 13:31 | 只看该作者
badaa 发表于 2012-2-1 13:28
不懂

神經病,你的称呼............
12#
xdd6622 发表于 2012-2-1 13:43 | 只看该作者
rkingj 发表于 2012-2-1 12:51
天文学家能够观测到的最遥远的光线名为“宇宙微波背景辐射”(CMB)。这是抵达地球的最古老的光子,它们几乎 ...

哦,宇宙,大爆炸,多普勒红移,超新星,白矮星,黑洞,白洞,。。。。。。这些高中时就读过许多书,感觉人类只是过眼烟云,太渺小了。
13#
xdd6622 发表于 2012-2-1 13:49 | 只看该作者
人类一直在研究中微子,前段时间欧洲不是发现中微子比光速快了一丁点?如果真这样,爱因斯坦的相对论要改写了
14#
kirinblue 发表于 2012-2-1 14:05 | 只看该作者
我也挺喜欢霍金的 经常看CCTV记录  貌似电视台就这一个还能看  起码能看到英文原声的
15#
zh_555 发表于 2012-2-1 14:27 | 只看该作者
时间简史是霍金大师用来科普的,一弄就成经典了。可惜,这样的人(身残废)在中国连生存都困难,更不用说国家养着搞研究了。
话说回来,个人感觉宇宙对于人类来说太大太大了,作为一个兴趣爱好可以多看两眼,但全身心投入研究它。。。,搞深了是否会产生人类意识上的生存无意义感?比如说,熵值总是要归零的,宇宙总是要灭亡的。
作为兴趣爱好,肯定是很好的,增加一些开阔的宇宙大视角,总可以减少一些蝇头小利之间的斤斤计较。
16#
pphiuyt 发表于 2012-2-1 14:42 | 只看该作者
宇宙啥的最没法琢磨了......  宇宙之外是啥?   
难道空间是有限的?空间怎么从无到有,扩大的?
17#
solonace 发表于 2012-2-1 14:56 | 只看该作者
厨师 发表于 2012-2-1 13:07
天体物理系,The Big Bang Theory哪个科学家?

天才也性感?
18#
gmx168 发表于 2012-2-1 15:37 | 只看该作者
好,买本回来看看。

乳猪还有啥推荐的书目,列一下。
19#
ach9999 发表于 2012-2-1 16:15 | 只看该作者
这本书 我看了。。。但是真看不懂   

还有时间简史 我都有~
20#
gmx168 发表于 2012-2-1 16:27 | 只看该作者
ach9999 发表于 2012-2-1 16:15
这本书 我看了。。。但是真看不懂   

还有时间简史 我都有~

容易看懂的书其实帮助不大
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部